Source code for ouster.sdk.client.core

"""Ouster sensor Python client.

Copyright (c) 2021, Ouster, Inc.
All rights reserved.

This module contains more idiomatic wrappers around the lower-level module
generated using pybind11.
"""
from contextlib import closing
from typing import (cast, Iterable, Iterator, List, Optional, Tuple,
                    Union, Callable)
import time
import logging
import numpy as np
import warnings
from more_itertools import take
from typing_extensions import Protocol

from ouster.sdk._bindings.client import (SensorInfo, PacketFormat, LidarScan, ScanBatcher, get_field_types,
                      LidarPacket, Packet, FieldType)

from .data import (FieldTypes)

from .scan_source import ScanSource

logger = logging.getLogger("ouster.sdk.client.core")


[docs]class ClientError(Exception): """Base class for client errors.""" pass
[docs]class ClientTimeout(ClientError): """Raised when data does not arrive within the expected time.""" pass
[docs]class ClientOverflow(ClientError): """Raised when data loss is possible due to internal buffers filling up.""" pass
[docs]class PacketSource(Protocol): """Represents a single-sensor data stream."""
[docs] def __iter__(self) -> Iterator[Packet]: """A PacketSource supports ``Iterable[Packet]``. Currently defined explicitly due to: https://github.com/python/typing/issues/561 """ ...
@property def metadata(self) -> SensorInfo: """Metadata associated with the packet stream.""" ...
[docs] def close(self) -> None: """Release the underlying resource, if any.""" ...
@property def is_live(self): ...
[docs]class Packets(PacketSource): """Create a :class:`PacketSource` from an existing iterator.""" _it: Iterable[Packet] _metadata: SensorInfo def __init__(self, it: Iterable[Packet], metadata: SensorInfo): """ Args: it: A stream of packets metadata: Metadata for the packet stream """ self._it = it self._metadata = metadata @property def metadata(self) -> SensorInfo: return self._metadata
[docs] def __iter__(self) -> Iterator[Packet]: """Return the underlying iterator.""" return iter(self._it)
[docs] def close(self) -> None: pass
@property def is_live(self) -> bool: return False
[docs]class Scans(ScanSource): """Deprecated: An iterable stream of scans batched from a PacketSource. Batching will emit a scan every time the frame_id increments (i.e. on receiving first packet in the next scan). Reordered packets will be handled, except across frame boundaries: packets from the previous scan will be dropped. Optionally filters out incomplete frames and enforces a timeout. A batching timeout can be useful to detect when we're only receiving incomplete frames or only imu packets. Can also be configured to manage internal buffers for soft real-time applications. """ def __init__(self, source: PacketSource, *, complete: bool = False, timeout: Optional[float] = 2.0, fields: Optional[List[FieldType]] = None, _max_latency: int = 0) -> None: """ Args: source: any source of packets complete: if True, only return full scans timeout: seconds to wait for a scan before error or None fields: specify which channel fields to populate on LidarScans _max_latency: (experimental) approximate max number of frames to buffer """ warnings.warn("client.Scans(...) is deprecated: " "Use client.ScansMulti(...).single_source(0) or the appropriate scan source directly instead. " "This API is planned to be removed in Q4 2024.", DeprecationWarning, stacklevel=2) self._source = source self._complete = complete self._timeout = timeout self._max_latency = _max_latency # used to initialize LidarScan self._field_types: FieldTypes = ( fields if fields is not None else get_field_types(self._source.metadata.format.udp_profile_lidar)) self._fields = [] for f in self._field_types: self._fields.append(f.name)
[docs] def __iter__(self) -> Iterator[LidarScan]: """Get an iterator.""" w = self._source.metadata.format.columns_per_frame h = self._source.metadata.format.pixels_per_column columns_per_packet = self._source.metadata.format.columns_per_packet packets_per_frame = w // columns_per_packet column_window = self._source.metadata.format.column_window # If source is a sensor, make a type-specialized reference available from ouster.sdk.client import Sensor sensor = cast(Sensor, self._source) if isinstance( self._source, Sensor) else None ls_write = None pf = PacketFormat.from_info(self._source.metadata) batch = ScanBatcher(self._source.metadata) # Time from which to measure timeout start_ts = time.monotonic() it = iter(self._source) self._packets_consumed = 0 self._scans_produced = 0 while True: try: packet = next(it) self._packets_consumed += 1 except StopIteration: if ls_write is not None: if not self._complete or ls_write.complete(column_window): yield ls_write return if self._timeout is not None and (time.monotonic() >= start_ts + self._timeout): raise ClientTimeout( f"No valid frames received within {self._timeout}s") if isinstance(packet, LidarPacket): ls_write = ls_write or LidarScan( h, w, self._field_types, columns_per_packet) if batch(packet, ls_write): # Got a new frame, return it and start another if not self._complete or ls_write.complete(column_window): yield ls_write self._scans_produced += 1 start_ts = time.monotonic() ls_write = None # Drop data along frame boundaries to maintain _max_latency and # clear out already-batched first packet of next frame if self._max_latency and sensor is not None: buf_frames = sensor.buf_use // packets_per_frame drop_frames = buf_frames - self._max_latency + 1 if drop_frames > 0: sensor.flush(drop_frames) batch = ScanBatcher(w, pf)
[docs] def close(self) -> None: """Close the underlying PacketSource.""" self._source.close()
@property def metadata(self) -> SensorInfo: """Return metadata from the underlying PacketSource.""" return self._source.metadata @property def is_live(self) -> bool: """Returns true if the source is a live data stream.""" return self._source.is_live @property def is_seekable(self) -> bool: return False @property def is_indexed(self) -> bool: return False @property def field_types(self) -> List[FieldType]: return self._field_types @property def fields(self) -> List[str]: return self._fields @property def scans_num(self) -> Optional[int]: return None def __len__(self) -> int: raise TypeError("len is not supported on live or non-indexed sources") def _seek(self, _) -> None: raise RuntimeError( "can not invoke __getitem__ on non-indexed source") def __getitem__(self, _: Union[int, slice] ) -> Union[Optional[LidarScan], ScanSource]: raise RuntimeError( "can not invoke __getitem__ on non-indexed source") def __del__(self) -> None: pass def _slice_iter(self, _: slice) -> Iterator[Optional[LidarScan]]: raise NotImplementedError
[docs] def slice(self, _: slice) -> ScanSource: raise NotImplementedError
[docs] def clip(self, fields: List[str], lower: int, upper: int) -> ScanSource: raise NotImplementedError
[docs] def reduce(self, beams: int) -> 'ScanSource': raise NotImplementedError
[docs] def mask(self, fields: List[str], mask: Optional[np.ndarray]) -> ScanSource: raise NotImplementedError
[docs] @classmethod def sample( cls, hostname: str = "localhost", n: int = 1, lidar_port: int = 7502, *, metadata: Optional[SensorInfo] = None ) -> Tuple[SensorInfo, Iterator[List[LidarScan]]]: """Conveniently sample n consecutive scans from a sensor. Does not leave UDP ports open. Suitable for interactive use. Args: hostname: hostname of the sensor n: number of consecutive frames in each sample lidar_port: UDP port to listen on for lidar data metadata: explicitly provide metadata for the stream Returns: A tuple of metadata queried from the sensor and an iterator that samples n consecutive scans """ from .sensor import Sensor with closing(Sensor(hostname, lidar_port, 7503, metadata=metadata)) as sensor: metadata = sensor.metadata def next_batch() -> List[LidarScan]: with closing( Sensor(hostname, lidar_port, 7503, metadata=metadata, buf_size=n * 0.2, _flush_before_read=False)) as source: source.flush(full=True) scans = cls(source, timeout=2.0, complete=True, _max_latency=0) return take(n, scans) return metadata, iter(next_batch, [])
[docs] @classmethod def stream( cls, hostname: str = "localhost", lidar_port: int = 7502, *, buf_size: float = 1.0, timeout: Optional[float] = 2.0, complete: bool = True, metadata: Optional[SensorInfo] = None, fields: Optional[List[FieldType]] = None) -> 'Scans': """Stream scans from a sensor. Will drop frames preemptively to avoid filling up internal buffers and to avoid returning frames older than the scanning period of the sensor. Args: hostname: hostname of the sensor lidar_port: UDP port to listen on for lidar data timeout: seconds to wait for scans before signaling error complete: if True, only return full scans metadata: explicitly provide metadata for the stream fields: specify which channel fields to populate on LidarScans """ from .sensor import Sensor source = Sensor(hostname, lidar_port, 7503, metadata=metadata, buf_size=buf_size, timeout=timeout, _flush_before_read=True) return cls(source, timeout=timeout, complete=complete, fields=fields, _max_latency=2)
class FrameBorder: """Create callable helper that indicates the cross frames packets.""" def __init__(self, meta: SensorInfo, pred: Callable[[Packet], bool] = lambda _: True): self._last_f_id = -1 self._last_packet_ts = None self._last_packet_res = False self._pred = pred self._pf = PacketFormat(meta) def __call__(self, packet: Packet) -> bool: if isinstance(packet, LidarPacket): # don't examine packets again if (self._last_packet_ts and (packet.host_timestamp != 0) and self._last_packet_ts == packet.host_timestamp): return self._last_packet_res f_id = self._pf.frame_id(packet.buf) changed = (self._last_f_id != -1 and f_id != self._last_f_id) self._last_packet_res = changed and self._pred(packet) self._last_f_id = f_id return self._last_packet_res return False def first_valid_column(scan: LidarScan) -> int: """Return first valid column of a LidarScan""" return int(np.bitwise_and(scan.status, 1).argmax()) def last_valid_column(scan: LidarScan) -> int: """Return last valid column of a LidarScan""" return int(scan.w - 1 - np.bitwise_and(scan.status, 1)[::-1].argmax()) def first_valid_column_ts(scan: LidarScan) -> int: """Return first valid column timestamp of a LidarScan""" return scan.timestamp[first_valid_column(scan)] def first_valid_packet_ts(scan: LidarScan) -> int: """Return first valid packet timestamp of a LidarScan""" columns_per_packet = scan.w // scan.packet_timestamp.shape[0] return scan.packet_timestamp[first_valid_column(scan) // columns_per_packet] def last_valid_packet_ts(scan: LidarScan) -> int: """Return first valid packet timestamp of a LidarScan""" columns_per_packet = scan.w // scan.packet_timestamp.shape[0] return scan.packet_timestamp[last_valid_column(scan) // columns_per_packet] def last_valid_column_ts(scan: LidarScan) -> int: """Return last valid column timestamp of a LidarScan""" return scan.timestamp[last_valid_column(scan)] def first_valid_column_pose(scan: LidarScan) -> np.ndarray: """Return first valid column pose of a LidarScan""" return scan.pose[first_valid_column(scan)] def last_valid_column_pose(scan: LidarScan) -> np.ndarray: """Return last valid column pose of a LidarScan""" return scan.pose[last_valid_column(scan)] def valid_packet_idxs(scan: LidarScan) -> np.ndarray: """Checks for valid packets that was used in in the scan construction""" valid_cols = scan.status & 0x1 valid_packet_ts = scan.packet_timestamp != 0 sp = np.split(valid_cols, scan.packet_timestamp.shape[0]) # here we consider the packet is valid when either one is true: # - any columns in the packet has a valid status # - packet_timestamp is not zero, which may occur even when # all columns/px data in invalid state within the packet. # It means that we received the packet without per px data # but with all other headers in place valid_packets = np.logical_or(np.any(sp, axis=1), valid_packet_ts) return np.nonzero(valid_packets)[0] def poses_present(scan: LidarScan) -> bool: """Check whether any of scan.pose in not identity""" return not np.allclose(np.eye(4), scan.pose)