OSF Python Examples

Ouster Python API for OSF

Python OSF Reader/Writer API is a Python binding to the C++ OSF Reader/Writer implementation which means that all reading and writing operations works at native speeds.

All examples below assume that a user has an osf_file variable with a path to an OSF file and ouster.osf package is imported:

import ouster.osf as osf

osf_file = 'path/to/osf_file.osf'

You can use ouster-cli source .... save commands to generate a test OSF file to test any of the examples.

Every example is wrapped into a CLI and available for quick tests by running python3 -m ouster.sdk.examples.osf <OSF_FILE.osf> <EXAMPLE_NAME>:

$ python3 -m ouster.sdk.examples.osf --help

usage: osf.py [-h] [--scan-num SCAN_NUM] OSF EXAMPLE

Ouster Python SDK OSF examples. The EXAMPLE must be one of:

For example to execute the get-lidar-streams example you can run:

$ python3 -m ouster.sdk.examples.osf <OSF_FILE.osf> get-lidar-streams

Read Lidar Scans with osf.Scans

osf.Scans() interface is the simplest way to get all LidarScan objects for the first sensor that was found in an OSF (majority of our test data uses only a single sensor recordings):

scans = osf.Scans(osf_file)
for scan in scans:
    print(f'scan = {scan}, WxH={scan.w}x{scan.h}')

# or with timestamps
for ts, scan in scans.withTs():
    print(f'ts = {ts}, scan = {scan}, WxH={scan.w}x{scan.h}')

Underneath it looks for available sensor streams, peeks first, creates the osf.Reader, reads the messages and decodes them to LidarScan objects.

Note about timestamp ts

All messages in an OSF are stored with a timestamp so it’s an essential part of the stream during the read operation. If later you will decide to store the post-processed LidarScan back into another OSF it’s better to preserve the original ts which usually came from NIC/PCAP/BAG headers. To get ts along with LidarScan use osf.Scans().withTs() iterator.

Get Sensors Info with osf.Reader

osf.Reader is the base Reader interface that get info about start/end_ts, reads and decodes all metadata entries, get access to chunks and messages of the OSF file.

Sensors information is stored as osf.LidarSensor metadata entry and can be read with the reader.meta_store.find() function that returns all metadata entry of the specified type (in our case it’s of type osf.LidarSensor):

reader = osf.Reader(osf_file)
# Get all stored sensors information
sensors = reader.meta_store.find(osf.LidarSensor)
for sensor_id, sensor_meta in sensors.items():
    info = sensor_meta.info
    print(f"sensor[{sensor_id}] = ", info)

Read All Messages with osf.Reader

With osf.Reader, you can use reader.messages() iterator to read messages in timestamp order.

reader = osf.Reader(osf_file)
# Reading all messages
for msg in reader.messages():
    print(f'ts = {msg.ts}, stream_im = {msg.id}')
    if msg.of(osf.LidarScanStream):
        scan = msg.decode()
        print(f'  got lidar scan = {scan.h}x{scan.w}')

Checking Chunks Layout via osf.StreamingInfo

Building on top of an example from above we can check for stream statistics information from osf.StreamingInfo:

reader = osf.Reader(osf_file)
# finds the first StreamingInfo metadata entry if any present
streaming_info = reader.meta_store.get(osf.StreamingInfo)
if streaming_info:
    print("Stats available (STREAMING layout):")
    for stream_id, stream_stat in streaming_info.stream_stats:
        msg_cnt = stream_stat.message_count
        msg_avg_size = stream_stat.message_avg_size
        print(f"  stream[{stream_id}]: msg_count = {msg_cnt},",
              f"msg_avg_size = {msg_avg_size}")
    print("No stats available (STANDARD layout)")

For more information about osf.StreamingInfo metadata entry please refer to [RFC 0018]_.

Get Lidar Scan streams info via osf.LidarScanStream

Every message in an OSF belongs to a stream of a particular type (i.e. osf.LidarScanStream, osf.LidarImuStream, etc.). Streams information stored as metadata entry within osf.Reader.meta_store object that can be read and decoded in various ways. Below is an example of how we can check parameters of an available LidarScan streams (osf.LidarScanStream) by checking the metadata entries:

reader = osf.Reader(osf_file)
lidar_streams = reader.meta_store.find(osf.LidarScanStream)
for stream_id, stream_meta in lidar_streams.items():
    sensor_id = stream_meta.sensor_meta_id
    field_types = stream_meta.field_types
    print(f"  sensor_id = {sensor_id}")
    print(f"  field_types = {field_types}")

Write Lidar Scan with sliced fields with osf.Writer

We will look into the osf.Writer example on the task of re-coding the available OSF file into Lidar Scans with a reduced fields. By reduce fields we mean here that if LidarScan has 7 channel fields, we can keep only 3 and save the disk space and bandwidth during replay.

A general scheme of writing scans to the OSF with Writer:

  1. Create osf.Writer with the output file name, lidar metadata(s) (ouster.sdk.client.SensorInfo) and optionally the desired output scan fields.

  2. Use the writers’s save function writer.save(index, scan) to encode the LidarScan scan into the underlying message buffer for lidar index and finally push it to disk. If you have multiple lidars you can save the scans simultaneously by providing them in an array to writer.save.

# Scans reader from input OSF
scans = osf.Scans(osf_file)

# New field types should be a subset of fields in encoded LidarScan so we just assume that
# RANGE, SIGNAL and REFLECTIVITY fields will be present in the input OSF file.
new_field_types = dict({
    client.ChanField.RANGE: np.dtype('uint32'),
    client.ChanField.SIGNAL: np.dtype('uint16'),
    client.ChanField.REFLECTIVITY: np.dtype('uint16')

output_file_base = os.path.splitext(os.path.basename(osf_file))[0]
output_file = output_file_base + '_sliced.osf'

# Create Writer with a subset of fields to save (i.e. slicing will happen
# automatically on write)
writer = osf.Writer(output_file, scans.metadata, new_field_types)

# Read scans and write back
for ts, scan in scans.withTs():
    print(f"writing sliced scan with ts = {ts}")
    writer.save(0, scan, ts)


Split Lidar Scan stream into multiple files

Another example of using osf.Writer that we will see is the splitting of Lidar Scan stream from one OSF file into 2 files.

reader = osf.Reader(osf_file)
start_ts = reader.start_ts
end_ts = reader.end_ts
n_splits = 2
split_dur = int((end_ts - start_ts) / n_splits)

# Scans reader from input OSF
scans = osf.Scans(osf_file)

output_file_base = os.path.splitext(os.path.basename(osf_file))[0]

# Create N writers and create N output Lidar Streams to write too
writers = []
for i in range(n_splits):
    writers.append(osf.Writer(f"{output_file_base}_s{i:02d}.osf", scans.metadata))

# Read scans and write to a corresponding output stream
for ts, scan in scans.withTs():
    split_idx = int((ts - start_ts) / split_dur)
    print(f"writing scan to split {split_idx:02d} file")
    writers[split_idx].save(0, scan)

# No need to call close, underlying writers will close automatically on destroy